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Abstract— This paper reports on a method for robust se-
lection of inter-map loop closures in multi-robot simultaneous
localization and mapping (SLAM). Existing robust SLAM
methods assume a good initialization or an “odometry back-
bone” to classify inlier and outlier loop closures. In the
multi-robot case, these assumptions do not always hold. This
paper presents an algorithm called Pairwise Consistency Max-
imization (PCM) that estimates the largest pairwise internally
consistent set of measurements. Finding the largest pairwise
internally consistent set can be transformed into an instance
of the maximum clique problem from graph theory, and by
leveraging the associated literature it can be solved in real-
time. This paper evaluates how well PCM approximates the
combinatorial gold standard using simulated data. It also
evaluates the performance of PCM on synthetic and real-world
data sets in comparison with DCS, SCGP, and RANSAC, and
shows that PCM significantly outperforms these methods.

I. INTRODUCTION

In multi-agent simultaneous localization and mapping
(SLAM), multiple robots collect measurements about their
own trajectories, the environment, and possibly other robots.
To generate an accurate map of the environment, it is
necessary to estimate both the local trajectories of the robots
as well as the relative offsets (translation and orientation)
between the trajectories.

In pose graph SLAM, the map estimation problem is
formulated as a factor graph consisting of pose node vari-
ables and factor nodes. We often formulate the single robot
pose graph SLAM problem as the maximum likelihood
estimate (MLE) of the time discretized robot trajectory given
odometric and loop closure measurements [1]. Assuming
independent measurements and additive Gaussian noise in
the measurement and robot process models, this becomes a
non-linear, weighted least squares problem and can be solved
quickly using available solvers [2, 3].

However, accurately determining large loop closure factors
is a difficult problem, and least squares can be susceptible to
outliers. A variety of methods have been proposed to enhance
robustness by disabling factors with high residual error [4–7],
but they either depend on having an odometry backbone of
trusted measurements to judge against or a good prior on the
relative pose of the vehicles [8]. In multi-agent SLAM, this
odometry backbone is non-existent, and a prior on relative
pose may not exist.

The use of multiple vehicles enables increased scalability
and efficiency in the mapping process. However, to ac-
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Fig. 1. An illustration of the Pairwise Consistency Maximization (PCM)
algorithm for selecting consistent inter-map loop closures measurements.
(A) Given two independently derived pose graphs (shown in white and
black in step A) and a set of potential loop closures between them (shown
by colored, dotted lines), our goal is to determine which of these inter-
robot loop closures should be trusted. (B) Using a consistency metric such
as Mahalanobis distance, we calculate the consistency of each pairwise
combination of measurements. (C) We store these pairwise consistency
values in a matrix where each element corresponds to the consistency of a
pair of measurements. (D) We can transform this matrix into the adjacency
matrix for a consistency graph by thresholding the consistency and making
it symmetric using the maximum consistency when associated elements
across the diagonal have differing consistency values. Each node in this
graph represents a measurement and edges denote consistency between
measurements. Cliques in this graph are pairwise internally consistent sets.
(E) Finding the maximum clique represents finding the largest pairwise
internally consistent set. (F) After determining the largest consistent set, we
can robustly merge the two pose graphs using only the consistent inter-map
loop closures, allowing us to reject false measurements.

curately fuse their maps, the vehicles must estimate their
position with respect to one another. This process, very
similar to the loop closure problem in single robot SLAM,
requires accurately selecting a set of consistent, perception-
derived pose measurements relating the relative position and
orientation of the two vehicles and their maps. In this paper,
we present a tractable and robust way of selecting which
measurements to trust.

Rather than attempt to classify measurements as inliers
and outliers, we find the largest consistent set of inter-robot
relative pose measurements. We first formulate this problem
as a combinatorial optimization problem, which turns out to
be an instance of the NP-complete maximum clique problem.
We then present a method from graph theory literature that
finds the optimal solution for moderately sized problems
(including many multi-robot map merging scenarios), as well
as a heuristic that can be used to approximate it for larger
numbers of measurements.



Our contibutions include the following: i) In §IV, a novel
definition of pairwise internally consistent sets and the
formulation of the robust multi-vehicle map merging problem
as a combinatorial problem that seeks to find the maximum
cardinality set of internally consistent measurements. ii) In
§V, a method for transforming the PCM problem into the
equivalent problem of finding the maximal clique of a
consistency graph, for which several algorithms exist.

The remainder of this paper is organized as follows. In
§II, we cover related work. In §III, we present the general
formulation of the multi-robot pose graph SLAM problem.
In §VI, we outline the steps needed to integrate PCM into
a map merging system. In §VII, we evaluate PCM on
synthetic and real-world datasets and show that PCM out-
performs the state-of-the-art methods in selecting consistent
measurements and estimating the merged maps. Finally in
§VIII, we conclude.

II. RELATED WORK

Current methods for identifying loop closures often
severely limit the number of accepted measurements by
setting high likelihood thresholds in an attempt to filter out
false positives [9]. In pose graph SLAM, inconsistent mea-
surements must be filtered or they may distort the estimated
graph.

The detection of outliers is an important problem in both
mobile robotics and computer vision and a variety of meth-
ods have been proposed to address it. In computer vision,
the RANSAC algorithm seeks to determine inlier/outlier sets
by iteratively fitting models to samples of the data and
counting the number of inliers [10]. However, RANSAC
relies on the fact that a point can be designated as an
inlier or outlier by measuring its likelihood given a proposed
model. However, in multi-robot SLAM, there is no unique
model we can use to determine if a constraint is an inlier.
Rather, we need to know if a measurement is consistent with
all the other measurements being considered as inliers. In
addition, RANSAC and many of its derivatives are sensitive
to parameter values that can be difficult to tune.

JCBB is a method that selects measurements by seeking
to determine the maximum jointly compatible set [11]. In
the multi-robot map merging problem, however, performing
JCBB can be difficult because doing so would require solv-
ing the graph for a combinatorial number of measurement
combinations to evaluate the likelihood of each measurement
given each combination of the other measurements.

There have been several outlier detection methods derived
specifically for pose graph SLAM. Switchable constraints
[4] proposes the use of of switchable error factors in the
SLAM back-end solver that enable pose constraints with
high residual error to be “turned off” so that they no longer
affect the solution. Dynamic covariance scaling [6] (DCS)
builds on [4] and uses scaling of measurement covariance to
more smoothly turn on and off measurement links between
poses. In [5] Max-Mixtures uses mixtures of Gaussians to
model multiple possible data modes. Realizing, Reversing,
Recovering [7] iteratively tries to find a set of relative pose

measurements that are consistent within themselves. How-
ever, each of these methods is designed with a single robot
pose graph in mind and fails without a good initialization of
relative pose [4–6] or a trusted odometry backbone [7].

Recently, several papers have been published directly
attempting to solve the “perceptual aliasing” problem of map
merging. Perceptual aliasing occurs when multiple locations
in the environment look similar enough that perceptual
sensors and methods mistake them for the same location. The
method presented in [12, 13] uses expectation maximization
to estimate the inliers and outliers in a set of measurements
that constrain the relative poses of multiple robots perform-
ing cooperative mapping. Our proposed method uses many
similar concepts to those presented in [12], but our solution
finds/estimates the maximum cardinality consistent set of
inter-robot measurements instead of iteratively refining an
initial guess. Generalized graph SLAM [8] handles multi-
hypothesis or outlier factors that could be derived from per-
ceptual aliasing by attempting to find the minimum ambigu-
ity spanning tree for the graph. However, their method does
not attempt to enforce consistency of measurements and, in
the multi-robot case, may select an incorrect measurement if
it happens to have the lowest uncertainty.

The two most similar methods to ours are [14] and [15].
Our method follows the same approach as [14] in that we
both attempt to find the maximal set of measurements that
are consistent with one another. However, their work has
only been extended to non-linear measurements in the case
of planar SLAM. Single Cluster Spectral Graph Partitioning
(SCGP) presented in [15, 16]. SCGP [16] attempts to de-
termine a single cluster of measurements, given a similarity
matrix, by thresholding the elements of the largest eigen-
vector. [15] uses a similar consistency metric to ours, but
they do not enforce pairwise internal set consistency as we
do.

III. PROBLEM FORMULATION

In our factor graph formulation of SLAM, we denote time
discretized versions of the the robot trajectory by xi ∈ SE(2)
or SE(3). The factors in the graph are derived from the mea-
surements observed by the robot and penalize estimates of
the trajectory that make the observed measurement unlikely.
We denote measurements that relate the variables xi and xj

by zij and call them odometric measurements if i and j are
consecutive and loop closure measurements if i and j are
non-consecutive in time. The goal of pose graph SLAM is,
then, to estimate the most likely value of each pose variable
xi given the factor measurements zij . We can formulate the
single robot pose graph SLAM problem as the MLE

X̂ = argmax
X

P (Z|X). (1)

where, X is the set of all pose variables xi, and Z is the set
of all relative pose measurements robot measurements zij .

In multi-robot SLAM, we also need to estimate the relative
transformation between the local coordinate frames of the
respective robots. We adopt the method presented by Kim
et al. [17], which proposes the use of an anchor node
for each trajectory that encodes the pose of the vehicle’s



local coordinate frame with respect to some global reference
frame. We denote the homogeneous transformation matrix
representing this offset by T g

a and represent measurements
relating cross-trajectory poses by zabij , where a and b are
robot IDs and i and j respectively denote which poses on
robots a and b are being related. T g

a is an element of SE(2)
or SE(3). zabij is also often an element of SE(2) or SE(3)
but can be a function of this transformation in general.

In the case of two robots, the SLAM estimation problem
becomes

X̂, T̂
g

= argmax
X,Tg

P (Za,Zb,Zab|X,Tg), (2)

where, X now represents the trajectories of both robots, Zab

represents the set of all cross-trajectory measurements, Zr

represents the set of measurements local to robot r, and Tg =
{Tg

a,T
g
b}. This problem can be treated as weighted, non-

linear least squares and can be solved efficiently using an
array of specialized optimization libraries.

Existing methods do a good job of handling outlier mea-
surements in the local measurement sets Za and Zb, but not
in the inter-robot set Zab since no prior estimate of the initial
transformation between the robot coordinate frames exists in
general. The focus of this paper is on selecting a subset of
the measurements in the inter-robot set Zab that we can trust.
The next section outlines our approach for doing so.

IV. PAIRWISE CONSISTENCY MAXIMIZATION

In this section, we first define a novel notion of consistency
and then we use that notion to formulate the selection of
inter-robot loop closure measurements as a combinatorial
optimization problem that finds the largest consistent set.

A. Pairwise Consistency
Directly determining if a measurement is an inlier or

outlier from the graph itself is unobservable [14]. Thus,
instead of trying to classify inlier versus. outlier, we attempt
to determine the maximum subset of measurements that are
internally pairwise consistent:
Definition 1: A set of measurements Z̃ is pairwise internally
consistent with respect to a consistency metric C and the
threshold γ if

C(zi, zj) ≤ γ, ∀ zi, zj ∈ Z̃ (3)

where, C is a function measuring the consistency of mea-
surements zi and zj , and γ is chosen a priori.

This definition of consistency requires that every measure-
ment in the set be consistent with every other measurement
in the set with respect to C and γ.

There are a variety of potential choices of a consistency
metric depending on the measurement model and the state
being observed. For the remainder of this paper, however,
we assume that all inter-robot measurements are relative
pose measurements with full degrees of freedom and use
the following metric based on [15]:

C(zabik , z
ab
jl ) =

∣∣∣∣∣∣(	zabik )⊕ x̂a
ij ⊕ zabjl ⊕ x̂b

lk

∣∣∣∣∣∣
Σ
, ||εikjl||Σikjl

(4)

where, we have adopted the notation of [18] to denote pose
composition using ⊕ and inversion using 	, || · ||Σ signifies
the Mahalanobis distance, and the variables x̂a

ij and x̂b
lk are

the current relative pose estimates of the associated poses
corresponding to inter-robot measurements zabik and zabjl .

This choice of metric is useful because it is both easy
to compute and follows a chi-squared distribution, giving us
a strategy to select the threshold γ without knowledge of
the specific dataset. The composition inside the norm of (4)
evaluates the pose transformation around a loop and should
evaluate to the identity transformation in the case of no noise
[15]. With Gaussian noise, this normalized squared error
follows a chi-squared distribution with degree of freedom
equal to the number of degrees of freedom in our state
variable. By setting γ accordingly, we can determine if the
measurements zabik and zabjl are consistent with one another.

It should also be noted that pairwise consistency does not
necessarily signify full joint consistency. It is possible that
a set of measurements can be pairwise internally consistent
but not jointly consistent. However, checking full joint con-
sistency is an exponential operation and requires possibly
checking every combination of measurements to evaluate
their consistency. Finding the maximum cardinality pairwise
consistent set is also exponential, but by formulating the
problem in this way, we can leverage a body of literature on
the maximum clique problem in graph theory that can find or
estimate the solution efficiently. In addition, in practice we
observed that testing for pairwise consistency was restrictive
enough to filter inconsistent measurements from typical pose
graphs with full degree of freedom measurements.

B. The Maximal Cardinality Pairwise Consistent Set
Having this definition of pairwise internal consistency

allows us to restrict our algorithm to only consider sets
of measurements that are pairwise internally consistent;
however, due to perceptual aliasing, we may end up with
multiple subsets that are pairwise internally consistent. We
need to find a way to select between these possible subsets.

The underlying assumption of our method is based on the
following two initial assumptions:
Assumption 1: The pose graphs are derived from multiple
robots or the same robot in multiple sessions exploring the
same environment.
Assumption 2: The inter-robot relative pose measurements
are derived from observations of that environment and the
system used to derive them is not biased toward selecting
incorrect measurements over correct ones.

These assumptions fit a large number of multi-robot
mapping situations and are reasonable even in perceptually
aliased environments whenever a place recognition system
does not systematically select the perceptually aliased mea-
surement over the correct ones.

If the above conditions are met than the following can also
be safely assumed:
Assumption 3: As the number of relative pose measure-
ments increases, the number of measurements in the correct
consistent subset will grow larger than those in the percep-
tually aliased consistent subsets.



Our goal is, then, to efficiently find the largest consistent
subset of Zab, which we denote by Z∗.

To formalize this, we introduce a binary switch variable,
su, for each constraint in the set Zab and let su take on
the value 1 if the measurement is contained in the chosen
subset and 0 otherwise. Note that there is a single su for
each measurement zabij ∈ Zab; however, for simplicity of
notation, we now re-number them with the single index u and
denote the corresponding measurement zabij by zu. Letting
S be the vector containing all su, our goal is to find the
solution, S∗, to the following optimization problem:

S∗ = argmax
S∈{0,1}m

‖S‖0

s.t. ||εuv||Σuv
susv ≤ γ,

(5)

where, m is the number of measurements in Zab, zu is the
measurement corresponding to su, εuv is the associated error
term corresponding to measurements zu and zv , and Σuv is
the covariance matrix associated with the error εuv . We refer
to this as the PCM problem.

Once found, we can use S∗ to index into Zab and get
Z∗. This consistent subset of the measurements can then
be plugged into any of the existing non-linear least squares
based solvers to merge the individual robot maps into a
common reference frame. In the next section, we show how
this problem can be reformulated into an equivilent problem
that has been well studied.

V. SOLVING PCM VIA MAXIMUM CLIQUE

In this section, we describe how to solve the PCM prob-
lem. The goal of PCM to determine the largest subset of
the measurements Zab that are pairwise internally consistent.
This pairwise consistency is enforced by the n2 constraints
listed in (5). It is important to note that the norm on the
left-hand side of the constraints does not contain any of
the decision variables si. These distance measures can be
calculated in pre-processing, as will be explained in §VI,
and combined into a matrix of consistency measures Q,
where each element [Q]uv = quv = ||εuv||Σuv

, corresponds
to the consistency of measurement zu and zv . This process
is depicted in steps B and C in Fig. I.

We’ll now introduce the concept of a consistency graph.
Definition 2: A consistency graph is a graph G = {V, E}
where each vertex v ∈ V represents a measurement and each
edge e ∈ E denotes consistency of the vertices it connects.

We can transform the matrix of consistency measures Q
into the adjacency matrix for a consistency graph if we
threshold it by γ and make it symmetric by requiring that
both quv and qvu be less than or equal to γ to insert an edge
into the graph. An example adjacency matrix and consistency
graph are shown in step D of Fig. I.

A clique in graph theory is defined as a subset of vertices
in which every pair of vertices has an edge between them
and the maximum clique is the largest such subset of nodes in
the graph. A clique of the consistency graph corresponds to a
pairwise internally consistent set of measurements because
every measurement is pairwise consistent with every other
measurement in the set. Thus, the solution to the problem

defined in (5) is the maximum clique of the consistency graph
(see step E of Fig. I).

In graph theory, the problem of finding the maximum
clique for a given graph is called the maximum clique
problem and is an NP-hard problem [19]. The maximum
clique problem is also hard to approximate [20, 21], meaning
that finding a solution arbitrarily close to the true solution
is also NP-hard. Dozens of potential solutions have been
proposed, each of which can be classified as either an exact
or a heuristic algorithm. All of the exact algorithms are
exponential in complexity and are usually based on branch
and bound, while the heuristic algorithms often try to exploit
some type of structure in the problem, making them faster,
but not guaranteeing the optimal solution [19].

In 2015, Pattabiraman et al. [22] proposed a method
that aggressively prunes the search tree and is able to find
maximum clique solutions for large sparse graphs relatively
quickly. They present both an exact algorithm as well as a
heuristic version that can be used when the exact algorithm
becomes intractable. Though our method could theoretically
use any one of the proposed maximum clique algorithms, we
selected the one proposed in [22] because of its simplicity,
parallelizablity, and open source implementation.

VI. ROBUST MULTI-ROBOT MAP MERGING

Integrating PCM into a map merging system consists of
four steps: i) Individual map generation ii) Consistency cal-
culation iii) Pairwise consistency maximization iv) Constraint
insertion and full map generation

The individual map generation step consists of solving for
an estimate of the individual pose graphs. This can be carried
out by any pose graph SLAM-based method as long as it is
possible to estimate the marginal and cross-covariances of
nodes and sets of nodes after a solution has been found.
This is important for estimating the Mahalanobis distance
matrix.

Using the consistency metric we have selected, the first
step in estimating the Mahalanobis distance matrix is to
extract the necessary marginal covariances. As explained
in §IV-A, we take each pair of potential, inter-robot mea-
surements and trace a loop using the transformations from
the underlying graph. To trace this loop, we extract the
covariance for every pair of nodes on a given local map
that are associated with an inter-robot constraint. Then, using
the methods described in [18], we calculate the “tail-to-tail”
between these nodes allowing us to estimate x̂a

ij and x̂b
lk and

their associated covariances. Finally, we use (4) to estimate
the distances ||εijkl||Σijkl

needed in (5). Σijkl = JΣJ>,
where J is equal to the Jacobian of εijkl with respect to
the two measurements and the two estimated local trajectory
components evaluated at their means. Σ is equal to the
associated block diagonal covariance matrix built up of the
covariances of the measurements and pose estimates.

In practice, this calculation is the bottleneck in processing
for our algorithm; however, by using analytical Jacobians,
parallelization, and incremental updates, we can significantly
reduce this calculation time. For more information on calcu-
lating the Mahalanobis distance see [18].
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Fig. 2. Histograms that evaluate how well PCM, SCGP [16], and RANSAC
[10] approximate the combinatorial maximum pairwise consistent set in (5).
The first row of histogram plots shows the size of the measurement set as
compared to the maximum consistent set size. The second row of histograms
shows the number of inconsistent pairs returned with respect to the set γ
threshold on Mahalanobis distance.

Once the matrix has been calculated, we convert it to an
adjacency matrix and solve the maximum clique problem as
explained in §V to determine the set of constraints that should
be enabled. Finally, we re-solve the graph using only those
inter-robot constraints. In practice, it helped when optimizing
over SE(3) to incrementally re-build the graph running a
batch optimization every few hundred nodes, while for SE(2)
adding the inter-robot factors directly to the already existing
graph and running a batch optimization was sufficient.

VII. EVALUATION

In this section, we evaluate the performance of PCM on a
variety of synthetic and real-world data-sets. For comparison,
we implemented single cluster graph partitioning (SCGP)
[16], dynamic covariance scaling (DCS) [6], and random
sample consensus (RANSAC) [10].

We implemented SCGP as described in [16], with the ex-
ception of using an off the shelf eigen-factorization library as
opposed to the power method for simplicity. We implemented
DCS as described in the original paper [6] with φ = 5.

We implemented RANSAC by iteratively selecting a sin-
gle, random inter-map measurement and evaluating the like-
lihood of the other measurements given the model estimated
from the sampled measurement. Because the processing time
for this evaluation is so low (given that the Mahalanobis
distance evaluations were performed in pre-processing), we
exhaustively iterate through all the measurements and evalu-
ate the likelihood of the other measurements with respect to
it in turn. We then return the set of measurements that are
likely given the sampled point with the largest support. As
explained in §VII-B, RANSAC is especially sensitive to the
likelihood threshold and does not check pairwise consistency.

For PCM, we present results using the exact maximum
clique algorithm (PCM-Exact), as well as the heuristic algo-
rithm (PCM-HeuPatt) as explained in §V.

A. Simulated 1D World
First, we simulated a one dimensional world where the

robot has a single state variable, x, and receives measure-
ments that are direct observations of that state. We simulate
inlier measurements by drawing multiple samples from a
Gaussian with a fixed variance and mean x. We simulate
both random and perceptually aliased outliers by drawing
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Fig. 3. A plot of the evaluation times of the different methods versus
the number of measurements being tested. The combinatorial solution takes
exponential time and PCM-Exact takes exponential time in the worst case,
while the other methods are polynomial in the number of measurements.
(This excludes the time to estimate the distance matrix Q, which is required
for all methods.)

multiple samples from a single Gaussian with fixed mean and
variance and several others from individual Gaussians with
random means and variances. We assume the variances are
known and are used when computing Mahalanobis distance.

1) Comparison with Combinatorial: For this first ex-
periment, we compare how well PCM-Exact and PCM-
HeuPatt approximated the combinatorial gold standard in
(5). We generated 100 000 sample worlds. On each of these
samples, we estimated the pairwise consistent set using the
combinatorial solution as well as PCM-Exact, PCM-HeuPatt,
SCGP [16], and RANSAC [10].

Fig. 2 shows a comparison between these four methods
with respect to the combinatorial solution. Both PCM method
enforce consistency of the returned measurements. PCM-
Exact returns the same number of points as the combinatorial
solution 100 percent of the time, while PCM-HeuPatt returns
the same number of points 98.97 percent of the time. SCGP
varies significantly in both the number of points returned
and the consistency of those measurements. RANSAC also
sometimes returns more or less points than the combinatorial
solution and also fails to enforce measurement consistency.

Interestingly, RANSAC is especially dependent on thresh-
old value. The threshold value for RANSAC is centered
around a single point and thus is not the same as the threshold
value for PCM. If the value is set too high, the number of
inconsistent measurements increases. If it is set too low, the
total number of returned measurements decreases below the
optimal. In Fig. 2, RANSAC’s threshold is set arbitrarily to
show a single snapshot.

2) Timing Comparison: We also used this 1D World to
evaluate the timing characteristics of the different algorithms.
To test this, we generated 500 sample worlds each for
an increasing number of measurement points. The results
are shown in Fig. 3. Note, these timing results can be
significantly improved through parallelization.
B. Synthetic 2D Comparison

To test our method’s accuracy and consistency on a full
SLAM dataset, we took a portion of the City10000 dataset
released with iSAM [2] and split it to form two separate robot
trajectories. After removing all factors connecting the two
graphs, we generated 81 different versions of this dataset by
randomly selecting a subset of the true loop closures between
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Fig. 4. The true positive rate (TPR = TP / (TP + FN)), false positive
rate (FPR = FP / (FP + TN)), and average normalized chi-squared value
(Chi2) of PCM-Exact, PCM-Heu, and RANSAC versus the threshold value
γ. The TPR and FPR can be thought of as the probability of getting a true
positive or a false positive. The Chi2 value should be close to zero if the
measurements in the graph are consistent.

the two graphs to be used as inliers, as well as randomly
adding outlier loop closures to the graph. As before, some
of the outliers are internally consistent to simulate perceptual
aliasing and some are generated randomly with random mean
and covariance. In this experiment, the number of inlier loop
closures was 15, there were two groups of 5 perceptual
alliased outliers, and the number of random outliers was 90.

1) Parameter Sweep: Because RANSAC is significantly
dependent on the threshold value set, we ran a parameter
sweep for the likelihood threshold over all 81 datasets. Fig. 4
summarizes this experiment. The true positive rate (TPR) and
false positive rate (FPR) of PCM is relatively unaffected by
the choice of the threshold parameter as long as it is less than
about 85 percent. RANSAC, on the other hand, has a differ-
ent FPR for each threshold selected and never has an FPR
of zero. This is because PCM conservatively evaluates the
consistency of each measurement and determines consistency
of a group of measurements as a whole, while RANSAC
selects the largest set of measurements that are likely given
a single randomly selected measurement. The last plot shows
the average normalized chi-squared value of the residual for
the entire graph after solving with the selected factors. This
value should be close to zero if the graph is consistent.

The results show that PCM does significantly better at
restricting the set of measurements to those that are consis-
tent with one another, decreasing the likelihood of getting a
false measurement. This is essential because of the extreme
susceptibility of SLAM to false loop closures. PCM-HeuPatt
is also almost indistinguishable from PCM-Exact.

2) Accuracy Analysis: To evaluate the accuracy of PCM,
we compared its performance on all 81 datasets to SCGP,
RANSAC (using the two second to lowest thresholds from
Fig. 4), and dynamic covariance scaling [6] or DCS. γ
for both PCM-Exact and PCM-HeuPatt was set so that it
corresponded to the equivalent of 11% likelihood.

Table I gives an overall summary of the results. We
used the Mean Squared Error (MSE) of the trajectory

of the two graphs (with respect to the no-outlier case),
the residual, and the normalized chi squared value of the
non-linear least squares solver as metrics to evaluate the
solution accuracy. The rotation MSE was calculated via
εrot = 1

n

∑
i

∣∣∣∣log(R>i trueRi est)
∣∣∣∣
F

over each pose i and
the translation MSE was calculated in the normal manner.
For this experiment all MSE were calculated with respect to
the absolute trajectory value.

PCM has the lowest trajectory MSE, and DCS has the
lowest residual. Note that DCS also has the highest trajectory
MSE, which is as expected. DCS seeks to minimize the least
squares residual error and depends on a good initialization to
determine what measurements are consistent enough to not
be turned off. Without this initialization, DCS has no reason
to believe that the inter-map factors are not outliers and thus
turns off all of the inter-map factors in the graph.

RANSAC and both PCM methods take about the same
amount of time to find the consistency set once given the
matrix Q. The average time to estimate the Mahalanobis
distances without the use of analytical jacobians, paralleliza-
tion, and incremental updates was 70.8 seconds.

Fig. 5 shows example plots of the estimated maps. Both
SCGP and RANSAC have trouble disabling all inconsis-
tent measurements. PCM-Heu well approximates PCM-Exact
and both PCM methods do well at disabling inconsistent
measurements. When PCM does accept measurements not
generated from the true distibution, they are still consistent
with the uncertainty of the local graphs.

C. Real-World Pose-Graph SLAM
We evaluate PCM on the 3D University of Michigan North

Campus Long-Term Vision and LiDAR Dataset (NCLT) [23].
The NCLT dataset was collected using a Seqway robot
equipped with a LiDAR and Microstrain IMU, along with
a variety of other sensors. There are 27 sessions in all with
an average length of 5.5 km per session.

For our experiment, we took two sessions collected about
two weeks apart, removed the first third of one and the last
third of the other, and then generated potential loop closure
measurements between the two graphs by aligning every
fourth scan on each graph using GICP [24] and selecting the
match with the lowest cost function. We then labeled these
registrations as “inliers” and “outliers” by thresholding the
translation and rotation mean squared error of the estimated
pose transformations with respect to the ground-truth poses
for the dataset derived by performing pose-graph optimiza-
tion on all 27 sessions. Finally, to increase the difficulty
of the dataset, we removed all but one sixteenth of the
measurements labeled as “inliers” from the graph, resulting
in a graph with 10 “inliers” and 98 “outliers.”

In this experiment, we compare PCM-HeuPatt with DCS,
SCGP, and RANSAC. Fig. 6 shows the normalized chi-
squared value of the resulting graphs for RANSAC and
PCM versus threshold. Table II provides a comparison of
results and Fig. 7 shows the estimated maps. The MSE was
calculated using the same method as in the prior section,
however in this test we calculated trajectory and map relative
pose error seperately. The trajectory MSE calculates the error



TABLE I
RESULTS FROM USING DCS [6], SCGP [16], RANSAC [10](WITH TWO DIFFERENT THRESHOLDS), AND PCM TO ROBUSTLY MERGE MAPS

GENERATED FROM A SYNTHETIC CITY DATASET. THESE RESULTS ARE A SUMMARY OF RUNS ON 81 DIFFERENT GENERATED DATASETS. WE

EVALUATED THE MEAN SQUARED ERROR (MSE) OF THE TWO GRAPHS WITH RESPECT TO THE NON OUTLIER CASE (NO-OUT). THE WORST RESULTS

FOR EACH METRIC ARE SHOWN IN RED, THE BEST ARE SHOWN IN BLUE, AND THE SECOND BEST SHOWN IN BOLD.

Trans. MSE (m2) Rot. MSE Residual Inliers Chi2 Value Eval Time (sec)
Avg Std Avg Std Avg Std TPR FPR Avg Std Avg

NO-OUT 0.0 0.0 0.0 0.0 32.320 0.117 1.0 0.0 N/A N/A N/A
DCS 183077.917 1194931.105 4.169 3.285 31.687 0.507 0.0 0.0 0.013 < 0.001 N/A
SCGP 623.278 1278.493 0.648 1.535 237385.743 894303.187 0.668 0.051 96.734 364.427 0.006
RANSAC-1% 5.688 21.976 0.009 0.040 185.190 587.590 0.998 0.006 0.076 0.239 < 0.001
RANSAC-3.5% 183.150 636.441 0.236 0.791 3807.570 18478.340 0.974 0.019 1.552 7.530 < 0.001
PCM-Exact-11% 0.276 1.537 < 0.001 0.003 45.057 105.385 0.997 0.001 0.018 0.043 < 0.001
PCM-HeuPatt-11% 0.276 1.537 < 0.001 0.003 45.057 105.385 0.997 0.001 0.018 0.043 < 0.001
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Fig. 5. Example plots of the maps estimated by PCM-Exact, PCM-HeuPatt, RANSAC, DCS, and SCGP for one of the generated city datasets. Correctly
labeled inlier factors are shown in bold dark blue with correctly disabled outliers shown as dotted gray. Accepted outliers are shown in bold red with
disabled inliers shown in pink.
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Fig. 6. The normalized chi-squared value (Chi2) of the resulting NCLT
graph versus the threshold value γ for PCM-HeuPatt and RANSAC. The
Chi2 value for RANSAC is never below one signifying that the selected
factors are probabalistically inconsistent, while the Chi2 value for PCM is
relatively constant and below 1.0 regardless of threshold.

in the estimated relative pose between consecutive nodes
allowing us to evaluate graph correctness, while the relative
map pose MSE evaluates the offset between the maps.

PCM results in the graph with the best trajectory MSE and
the best translational MSE for the relative pose of the two
graphs and results in a consistent graph regardless of thresh-
old. It also detects all of the “inlier” measurements as well as
three of the measurements labeled as “outliers”. DCS once
again disables all measurements. SCGP results in a good
graph but only enables three of the “inlier” measurements,
and finally RANSAC (for both of the lowest thresholds tried)
enables all “inliers” and several “outliers” and results in an
inconsistent graph regardless of the threshold selected.

Note that while in this experiment PCM admits more false
positives than in the last experiment, the measurements it

accepts are consistent with the “inlier” measurements and
local trajectories even though they were labeled as “outliers”
(Fig. 6). In fact, notice that PCM has a better MSE for the
relative map pose then the no outlier (NO-OUT) version of
the graph. This suggests that by maximizing the consistent
set, PCM is selecting measurements that are actually inliers
but were mis-labeled as outliers when compared to the
ground-truth. After verification this turned out to be the case.

It is also important to note that although SCGP results
in a good graph for this dataset, as shown in the earlier
experiment, this does not occur in all cases. In addition, it
fails to select the maximum consistent set of measurements,
this can be catastrophic in the case of perceptual aliasing.

VIII. CONCLUSION

In this paper, we introduced a novel method called Pair-
wise Consistency Maximization, or PCM. Using algorithms
developed to solve the maximum clique problem, we can
quickly estimate the largest consistent set of measurements
given a matrix of pairwise consistency measures. This allows
us to robustly merge maps generated by multiple robots
or multiple mapping sessions without assuming a prior on
relative pose. We compare our proposed methods to existing
methods such as DCS, SCGP, and RANSAC and show that
we significantly outperform these methods.

While in this paper we assume measurements are full
degrees of freedom, these methods can be generalized to non-



TABLE II
RESULTS FROM USING DCS [6], SCGP [16], RANSAC [10](WITH TWO DIFFERENT THRESHOLDS), AND PCM TO ROBUSTLY MERGE SEGMENTS

EXTRACTED FROM TWO SESSIONS OF THE NCLT DATASET [23]. NO-OUT CORRESPONDS TO A VERSION WITH NONE OF THE MEASUREMENTS

LABELED AS OUTLIERS. WE EVALUATED THE MEAN SQUARED ERROR (MSE) OF THE TWO GRAPHS WITH RESPECT TO THE GROUNDTRUTH. THE

WORST RESULTS FOR EACH METRIC ARE SHOWN IN RED AND THE BEST ARE SHOWN IN BLUE.
Rel. Pose MSE Traj. MSE Residual Inliers Chi2 Evaluation

Trans. (m2) Rot. Trans. (m2) Rot. Error TP FP Value Time (sec)
NO-OUT 455.4763 0.0308 0.0501 0.0005 765.072 10 0 0.3428 N/A
DCS 206782.2303 0.7154 0.0502 0.0005 724.061 0 0 0.2568 N/A
SCGP 522.2352 0.0162 0.0502 0.0005 748.351 3 0 0.3417 0.0021
RANSAC - 1% 1244.3818 0.0697 0.1036 0.0015 4228.21 10 6 1.8643 < 0.0001
RANSAC - 3.5% 13507.7032 17.4156 0.1146 0.0040 7457.54 10 7 3.2795 0.0001
PCM-HeuPatt 386.6876 0.0245 0.0501 0.0005 817.803 10 3 0.3635 0.0001
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Fig. 7. Plots of the trajectories of two partial sessions of the NCLT dataset as estimated by PCM-HeuPatt, RANSAC, DCS, and SCGP.

full degree of freedom measurements by defining group-k
consistency over generalized graphs. In addition, developing
methods for using PCM in an incremental fashion would be
an interesting avenue for future work.
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