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Abstract— A robot operating in the world constantly receives
information about its environment in the form of new measure-
ments at every time step. Smoothing-based estimation methods
seek to optimize for the most likely robot state estimate using all
measurements up till the current time step. Existing methods
solve for this smoothing objective efficiently by framing the
problem as that of incremental unconstrained optimization.
However, in many cases observed measurements and knowledge
of the environment is better modeled as hard constraints
derived from real-world physics or dynamics. A key challenge
is that the new optimality conditions introduced by the hard
constraints break the matrix structure needed for incremental
factorization in these incremental optimization methods.

Our key insight is that if we leverage primal-dual methods,
we can recover a matrix structure amenable to incremental
factorization. We propose a framework ICS that combines
a primal-dual method like the Augmented Lagrangian with
an incremental Gauss Newton approach that reuses previ-
ously computed matrix factorizations. We evaluate ICS on a
set of simulated and real-world problems involving equality
constraints like object contact and inequality constraints like
collision avoidance.

I. INTRODUCTION

Localization and state estimation are increasingly formu-
lated as smoothing problems since the use of such meth-
ods tends to lead to increased efficiency and accuracy [1].
Typically, the smoothing objective is formulated as a MAP
inference problem over a graph whose nodes are the un-
known state variables and edges encode sensor measurement
information. For Gaussian models, MAP inference results in
a sparse, unconstrained nonlinear least squares optimization
[2]. Such problems can be solved incrementally [3, 4], i.e. as
new measurements arrive at each time step, without having
to re-solve from scratch. However, in many cases observed
measurements and knowledge about the environment would
be better modeled as hard constraints in the optimization.
These can either be constraints imposed by physics, such as
robots must not violate dynamics or teleport through objects,
or these can be constraints imposed by certain sensors, such
as contact measurements. We address the problem of satis-
fying such constraints within the framework of incremental
optimization to allow for efficient and precise inference from
measurements arriving at each time step.
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Fig. 1. (a) Mobile robot navigating down a corridor: Enforcing inequality
constraints would restrict the space of possible robot trajectory estimates to
those not in collision. (b) Robot arm manipulating an object with uncertain
pose: Enforcing equality constraints would restrict the space of possible
poses to those in contact with robot gripper.

Consider the problem of a robot manipulating an object
whose pose is uncertain (Fig. I(b)). There are two primary
ways to sense object pose: one using a noisy and often
occluded vision system, and another using a precise contact
sensor placed on the arm. Under a typical unconstrained
optimization framework, contact sensor measurements would
be incorporated as high confidence cost priors, or an equiv-
alent of penalty terms in the optimization [5]. However,
this need not guarantee satisfaction of these terms, which
depends on ratio of their weights relative to other cost terms
in the objective. Too disproportionate a ratio can lead to
ill-conditioning, causing numerical issues. Moreover, it is
not straightforward to incorporate inequality constraints in
the unconstrained framework—e.g. a robot moving down a
corridor must lie within corridor boundaries even in presence
of a drifting state estimate indicating otherwise (Fig. I(a)).

The unconstrained incremental optimization framework is
an incremental Gauss-Newton method that relies on updating
sparse matrix factorizations of the Jacobians efficiently, with-
out needing to re-factorize at each time step [3]. These oper-
ations are no longer possible when constraints, i.e., Karush-
Kuhn-Tucker (KKT) conditions [6] are introduced. Our key
idea is to leverage primal-dual methods and work around this
limitation by splitting the optimization in two separate steps.
The primal step retains the structure of unconstrained non-
linear least squares, amenable to incremental Gauss Newton
methods. The dual step is simply a gradient ascent step which
is incremental in nature. As a result, constraints are precisely
satisfied without having to recompute solutions from scratch
every time step.

We propose a framework ICS for doing incremental con-
strained smoothing. ICS combines a primal-dual method like



the Augmented Lagrangian [7] with an incremental Gauss
Newton approach that reuses previously computed matrix
factorizations [3]. ICS works as follows: at each time step ¢,
the robot receives new measurements and constraints, it then
incrementally updates state estimates for times 1 : ¢ reusing
matrix factorizations from previous step and performing al-
ternating primal-dual updates to convergence at current step.
Hence, at any given time, it maintains a solution consistent
with all measurements received so far without having to re-
solve for all constraints. Our main contributions are:

1) Introduce incremental constrained smoothing problem.

2) Propose a primal dual framework with incremental
Gauss Newton steps for solving the problem.

3) Provide empirical evaluation against baselines for state
estimation applications.

II. RELATED WORK

Simultaneous Localization and Mapping (SLAM) problem
has been well studied for several decades [1]. Early methods
were based on the well-known extended Kalman Filter [8, 9].
However, such filtering-based methods had difficulty scaling
due to the curse of dimensionality [10, 11]. Eventually it
was recognized that by leveraging inherent sparsity, it was
possible to solve SLAM as a smoothing problem tractably
as a large but sparse nonlinear optimization over the entire
robot trajectory [12, 13]. While this enables handling a large
numbers of poses, solving it as a batch optimization requires
factorizing a large Jacobian matrix composed of all previous
measurements every new time step and is dependent on
having a good linearization point. To address this, Kaess
et al. [3] proposed incremental smoothing and mapping
(iISAM) that solved this problem incrementally by updating
the existing factorization with new measurements as opposed
to factorizing from scratch, enabling real-time optimization.

Above methods formulate the problem as a MAP inference
over a factor graph resulting in an unconstrained nonlinear
optimization problem. Within this framework, measurements
are incorporated as weighted terms in overall cost that pe-
nalizes deviation of predicted measurements from observed
values [2]. In many cases, however, observed measure-
ments or knowledge about the environment can be better
modeled as hard constraints in the optimization problem.
Some recent methods [14—17] have been proposed towards
incorporating hard constraints into the factor graph frame-
work. Cunningham et al. [14] perform hybrid elimination to
solve a system of equations with mixed unconstrained and
equality constraint factors. Ta et al. [15] too solve for mixed
unconstrained and equality constraint factors by utilizing a
special QR factorization within a SQP framework. Jimenez
et al. [17] extend to inequality constraints by treating active
inequalities as equality constraints in an active set. Choud-
hary et al. [16] solve for a distributed constrained objective
using ADMM within a factor graph framework.

All these methods [14-17], however, are formulated for
solving a batch optimization objective. It isn’t clear how
these can extend to incremental solutions wherein matrix
factorizations from previous time steps are to be reused

to avoid re-solving from scratch. Another set of related
batch optimization techniques utilize Lagrangian duality for
certifying optimality in SLAM solutions [18, 19]. A related
work by Bai et al. [20] formulates incremental SLAM as
a cycle/constraint selection problem finding an optimal set
of consistent transformations. This differs from our use of
incremental denoting reuse of matrix factorizations from
previous time steps.

III. PROBLEM FORMULATION

Maximum a posteriori (MAP) inference for localization
(or SLAM) problems with Gaussian noise models is equiv-
alent to solving a nonlinear least-squares problem [2]. For
a factor graph, MAP inference involves maximizing product
of all factor graph potentials, that is,

& = argmax H ¢i(x) (1)

i=1
Assuming that ¢;(z) are all Gaussian factors corrupted by
zero-mean, normally distributed noise,
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where, f;(x) is a likelihood function predicting the expected
measurement given the state, z; is the actual measurement,
and || - ||y, is the Mahalanobis distance with measurement
covariance ;.

A. Unconstrained nonlinear least-squares

The optimization objective in Eq. 2 is an unconstrained
nonlinear least-squares minimization. For general nonlinear
functions f;(x), this objective is non-convex. However, if
we have a reasonable initial guess available, we can use
nonlinear optimization methods like Gauss-Newton (GN)
to converge to a global minimum where gradient of the
optimization objective equals 0. GN proceeds by linearizing
measurement functions f;(-) at each iteration using a first-
order Taylor expansion as,

filz) = fz(ozo +0x) ~ fi(zo) + Fyox 3)
where, 20 is the linearization point, F; = afé%g(f) , is the

measurement Jacobian, and 6z = x — z° the state update
vector. Substituting the Taylor expansion back into Eq. 2,
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Fi% 2. Overview of set of operations involved at every new time step ¢ of our ICS framework. (a) Step 1 updates to the most recent matrix factorization
R® and Jacobians G(*), H(!) based on new measurements and new equality, inequality constraints arriving at time step . (b) Step 2 performs the
primal-dual updates iteratively until convergence to ensure that dz* satisfies the equality, inequality constraints within a threshold.

and, A, b are constructed by collecting all A;, b; together
into one giant matrix, vector respectively. Once the linear
system is solved, 2° is updated according to z° < 2% + §z*
and we iterate until convergence criteria are met.

B. Constrained nonlinear least-squares

Consider now the same least-squares objective as in Eq. 2
but now subject to a set of nonlinear equality and inequality
constraints,
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Linearizing measurement functions f;(-), g;(-), hg(-),
about a linearization point x° similar to Eq. 3 would result
in a subproblem of form,

1 m
0r* =argmin — Az — b||?
gnin 3 1407 b
0 (7N
s.t, Gox+g(z”)=0
Héx + h(z°) <0

where, A,b are constructed by collecting all A;,b; together
similar to the unconstrained case in Egs. 4, 5. G € RP*™,
H € RI*" here are jacobians of equality, inequality con-
straints respectively, and g(-) € RP, h(-) € R? are equality,

inequality constraint evaluations at linearization point x:°.

IV. APPROACH

We want to solve these optimization problems incremen-
tally, i.e. as measurements and constraints arrive. Section I'V-
A illustrates how to solve the unconstrained subproblem in
Eq. 4 incrementally based on Givens rotations [3]. However,
the constrained subproblem in Eq. 7 presents an additional
challenge due to additional linearized equality/inequality
constraints. It no longer suffices to set the gradient to 0,
instead, the KarushKuhnTucker (KKT) conditions [6] need
to be satisfied. In Section IV-B, we show how to do this in
a manner that allows us to use Givens rotation to facilitate
incremental updates.

A. Incremental unconstrained optimization
The unconstrained objective in Eq. 4 is solved as,
Vae 5llAdz bl =0
= AT Asz = ATp

®)

Eq. 8 is referred to as the normal equations. Since A is
typically sparse for localization (or SLAM) problems, we can
solve these normal equations efficiently using sparse matrix
factorization like QR decomposition [2, 3]. That is, factoring
m xn matrix A withm >nas Q [R O]T, and substituting
this factorization into the normal equations in Eq. 8,

[RT 0] QTQ m 5z = [RT 0] QTb

=  RTRéx=[RT 0 [d] ©)
e

= Réxr =d

where @ is a m x m orthogonal matrix with Q7 Q = I, R is
a n x n upper triangular matrix, and d € R”, e € R,

To solve this incrementally, when a new measurement
at time step t arrives, it is more efficient to modify the
previous time step factorization R~V directly by OR-
updating instead of updating and refactoring entire matrix
A again [3]. Adding a new measurement row w’ and
corresponding RHS v at time ¢ yields a new system that
is not yet in the correct factorized form,

(t=1) (t=1)
AW [RWT } , b [d }
~

To convert A® into correct factorized form R(t), Givens
rotations [3] are applied to zero out the new rows w7’
corresponding to new measurements at time step t. RHS of
Eq. 10 is simultaneously updated with the same rotations
to obtain d(*). This Givens rotations based updating of
the previous time step factorization R(*~1) provides the
basis of efficient incremental solutions for the unconstrained
problem [3]. In general, the maximum number of Givens
rotations needed for adding a new measurement row is 7n.
However, since both R“‘D, w?l are sparse, only a constant
number of Givens rotations are needed.

(10)



B. Incremental constrained optimization

For solving the constrained nonlinear least-squares ob-
jective in Eq. 7 it is no longer sufficient to only satisfy
gradient of the quadratic objective becoming zero (Eq. 8).
Instead we must construct the Lagrangian and ensure the
KKT conditions are satisfied at optimality. However, directly
solving KKT equations does not retain the form in Eq. 9
amenable to incremental factorization. Instead, we rely on
primal-dual methods that essentially split the optimization in
two: a primal step and a dual step. Specifically, we use the
augmented Lagrangian/method of multipliers [7]. We start
by writing out the Lagrangian for Eq. 7,

1
5 146z — bll3 + 0" (Goz + g(2°)) +
T (Héz + h(z"))

L(0x,v,u) =

1D
where, v € RP, u € R? are the dual variables associated
with equality, inequality constraints respectively.

The augmented Lagrangian also includes additional aug-
mentation terms (for improved robustness) in the Lagrangian
of the form £:||Géx + g(«)||3 and £2||Hoz + h(z°)|[3
corresponding to equality and inequality constraints respec-
tively. For simplicity of notations, we will absorb these
additional quadratic augmentation terms within ||Adx — b||3
itself. That is, similar to the derivation in Eq. 5, the overall
A, b matrix, vector will now additionally include rows A;, b;
with f\/m;/ﬁa bi 2lg(z%) and A; = /2 H,

To satiSfy KKT conditions at optimality, augmented
Lagrangian solves a maximin dual problem of the form
max, >0, ming,; £(dz, v, u). It solves this problem itera-
tively [7]: first, solving for d by minimizing the Lagrangian
treating v, u as constants, followed by maximizing resultant
dual function treating dx as constant. This iterative update
process at each iteration j can be expressed as,

dx? = argming, L(dz,vI ' u/™t) (12a)
v =i 4 1 (Goa? + g(2?)) (12b)
w/ = max (0,u/ ! + po(HSz7 + h(z?))) (12¢)

where, Eq. 12a is the primal update and Eqgs. 12b, 12c are
the dual updates. The dual updates are simply projected
gradient ascent steps for maximizing the dual function
maxy>0., ¢(v,u) = maxy,>o., L£(dz7,v,u). This step is
incremental in nature. pi, po are the ascent step sizes that
appeared earlier as coefficients of the augmentation terms.
Note that the dual function g(v, u) requires inequality duals
to be v > 0. This ensures that g(v, u) always lower bounds
the primal objective, and that maximizing g(v, ) approaches
the optimal primal objective [6].

Having split the optimization in Eq. 12, the primal update
can now be computed using Givens rotations similar to
Section IV-A. Expanding Eq. 12a we have

v5$£(5z7vj717uj71) =0
= AT A2 — ATh+ GTvi ™ 4 H W/ = 0
= AT AS27 = ATph — GTI~ 1 — gTyi-1

13)

Algorithm 1 ICS: Incremental Constrained Smoothing
fort =1to T do
Z14 4 2101 U Zy
if ! (batch) then
R d(t)] = givensUpdate(w(t_l), Z,, Rt~ qt-1
(G, g(V] = partialJacobian(z(t 1) | Z, G141
[H®, hm] = partialJacobian (z*~ ) 2y, H ) h(t by

[6x*, v*, w*] = primalDual (R, dm G(t) ® H(f) Ry [y (1))
= z(t D 4 sa*
v® v uw® ot

else
while <!converged> do
[R®),d®] = fullQR(z* =Y, Z1.4)
[G(t) (t>] = fullJacobian(xz (t=1) s Z1:t)
[H® h(t)] = fullJacobian(z*~ ) , Z1:t)
w*] = primalDual (R®), d“) G(t>

[6z* ,'u* (“,H(”), h(t)’v(t—l),u(f,fl))
2 gD 4 o5
vy, u®  y*
end while
end if
end for

Function: primalDual(R(Y), d(t) G() (1) F(#®) Rp(t) (t=1) 4, (t=1))

0 0

Initialize: j + 1, v° + v(t~D 40 1D
while <! converged> do

R(t)Ty —=Gg®" -l 4 HOT -1
RM§zd = 4t _y

vl v 4 p (GW oz + g))

u’ + max (0, W 4 po(HM 527 + h<f>))
end while )

return 6z7, v7, u’

This form is similar to the normal equations in Eq. 8. Since
A is sparse, we can apply QR factorization to solve Eq. 13.
That is, factoring m xn matrix A withm > nasQ [R 0] r
and substituting this factorization in Eq. 13,

[R" 0QTQ m 5z = [R" 0]Q"b— GTv" — HT W/

= R"Réaz’ = [R" 0] [‘ﬂ —GM T — HTW !

= Réx! =d— R T(GTv !+ HTw )

(14)

Eq. 14 can hence be solved as an iterative two-step process,
a forward substitution followed by a back substitution, i.e.,

RTy — (GTUj—l +HT’LLJ_1)
Réz! =d—vy

(15a)
(15b)

This differs from the original normal equations solution that
involved only a single back substitution (Eq. 9).

Figure 2 provides an overview of the set of operations
involved at every new time step ¢ of ICS. We need to update
the factorization R®) and Jacobians G, H®) once every
time step (Step 1), followed by solving for the primal, dual
updates iteratively until convergence (Step 2).

Algorithm 1 summarizes the overall incremental con-
strained smoothing method. It also shows periodic batch
steps that computes matrix factorization from scratch. These
steps may be triggered whenever we want to re-linearize past
states or update variable ordering to retain sparsity in the
factorization [3]. For simplicity, dual ascent step sizes p1, p2
are shown fixed in the algorithm. In practice, we use adaptive
step sizes for improved convergence. We make use of simple



GO Q TPOG

@) (b)

Fig. 4. Factor graphs for (a) Simulated Contact Dataset (b) Simulated/Real-
world Navigation Dataset. Factors shown are prior (green), odometry (blue),
equality constraints (red) and inequality constraints (orange).

adaptation scheme where: (a) p/ = p/~! x g if constraint
violation decreases by less than a minimum change factor,
or (b) p? = p/~1 x 1/r if constraint violation increases.

V. RESULTS AND EVALUATION

We evaluate ICS qualitatively and quantitatively on metrics
like constraint violations, estimation accuracies and runtime
performance against an incremental unconstrained optimiza-
tion approach like iSAM [3]. We implemented ICS within
the iSAM C++ library. All evaluations are done on a laptop
with an Intel Core i7-7820HQ 2.9GHz processor.

A. Datasets and Baselines

We evaluate our approach on the following three datasets:
(1) Simulated Contact, (2) Simulated Navigation, and (3)
Real-world Navigation. For the simulated contact dataset
we enforce equality constraints like object contact, while
for simulated and real-world navigation datasets we enforce
inequality constraints like collision avoidance.

Fig. 4(a),(b) shows factor graphs for Simulated Contact
and Simulated/Real-world Navigation datasets respectively.
A factor graph is a bipartite graph with: variable nodes
x € V (empty circles) and factor nodes ¢ € U (filled
circles) [13]. In Fig. 4(a) state variables 2, = [p, p}, ptg]T
model the 2D pose of a circular object at time ¢ being
pushed by a circular gripper. There are two measurements:
object odometry and contact sensor on the gripper. We model
contact measurements as equality constraint factors that
constrain the squared distance between object and gripper.

In Fig. 4(b) state variables z; = [pl, p!, pé]T models the
2D pose a mobile robot navigating inside a building. There
is one measurement: the robot odometry. We additionally
have inequality constraint factors that are piece-wise linear
constraints corresponding to boundaries of the corridor that
the robot is in currently. For now, we extract these corridor
constraints manually using the floor plan for both simulated
and real-world navigation datasets, and assume that we have
access to these constraints on the back-end.

Mean constraint violation (cm)

@ (®)
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We compare performance of ICS against an incremental
unconstrained optimization framework like iISAM [3]. For
comparison, equality/inequality constraint factors in ICS are
incorporated as regular unconstrained cost factors in iSAM.
We don’t include loop closure factors in any of the datasets
for simplicity of analysis. However, these can be incorporated
in both frameworks as additional binary factors to the graph.

Gaussian noise with 0,40, = 0.008,0.294,0.942 are
added to odometry measurements for datasets 1, 2, 3 respec-
tively. The convergence criteria for alternating primal dual
updates is set to ||Gdx + g||2 < €; for equality constraints
and ||Hdx + h||2 < e for inequality constraints that are not
satisfied (i.e. > 0). ¢; is set as 1076 (dataset 1), e5 as 10~*
(datasets 2,3). Maximum allowed primal-dual iterations are
set to 100. p; = 500 for dataset 1, and po = 20, 1 for datasets
2, 3 respectively. Adaptive dual ascent step size parameters
g,1/r are set to 5,0.1 respectively.

B. Performance accuracies

Fig. 3 shows performance accuracies on the Simulated
Contact dataset. Fig. 3(a), (b) qualitatively show estimated
object poses using ICS, iSAM respectively at four intermedi-
ate time steps where the gripper was in contact with object.
Incorporating contact as an equality constraint in ICS is able
to satisfy constraints more precisely (i.e. object in contact
with gripper) than incorporating it as an unconstrained factor
as in the case of iSAM. This can also be seen quantitatively
where lower mean constraint violations in Fig. 3(c) leads
to improved state estimates with lower RMSE absolute
trajectory errors (ATE) in Fig. 3(d).

Fig. 5 shows performance accuracies on the Simulated
Navigation dataset. Fig. 5(a) qualitatively show estimated
robot trajectory using ICS, iSAM at the final time step.
Incorporating corridor constraints as inequality constraints
is able to satisfy the constraint more precisely (i.e. collision-
free trajectories) than incorporating it as an unconstrained
factor. This can also be seen quantitatively where lower mean
constraint violations in Fig. 5(b) leads to improved state
estimates with lower RMSE ATE in Fig. 5(c).

Fig. 6 shows similar set of results as Fig. 5 but now on the
real-world MIT CSAIL 2D navigation dataset [21]. For our
evaluations, we treat the trajectory with loop closures as the
ground truth, and disable loop closures for all other runs. As
can be seen qualitatively in Fig. 6(a) ICS is able to satisfy
the constraint more precisely (i.e. collision-free trajectories).
This is also seen quantitatively in Fig. 6(b),(c) where lower
mean constraint violations leads to lower RMSE ATE values.
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Fig. 6. Dataset 3: Real-world Navigation Performance Accuracies

The jumps in constraint violations as seen with iSAM in
Figs. 5(b), 6(b) happen as iSAM is correcting pure odometry
trajectory to minimize the overall unconstrained cost: a
combination of trajectory and constraint violation costs.

C. Effect of varying cost weights

Since constraints within iSAM are incorporated as costs or
soft constraints, the degree to which they are satisfied would
depend on their weights relative to other terms in the cost
function. Fig. 7 shows variation of mean constraint violations
and RMSE ATE values for iSAM, ICS with varying values
of ps for Dataset 2. py is the weighting coefficient of
the augmentation term £2||Hdx + h||3 associated with the
inequality constraint factor. It can be seen that accuracy of an
unconstrained framework like iISAM is much more sensitive
to changes in this weighting. ICS ensures that constraint
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Fig. 7. Performance accuracies with varying cost weights (Dataset 2)
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violations lie under a set threshold irrespective of ps.
D. Runtime performance

Fig. 8 shows runtime of an incremental step in ICS/iSAM
against number of time steps. ICS is more computationally
expensive than iSAM, since iterative primal-dual iterations
need to be done every incremental step. However, in compar-
ison to a batch constrained solver (eg. active set method) that
solves for the KKT conditions directly, incrementally solving
for constraints will be more efficient for large matrices. This
is since a direct solution to the KKT conditions involves the
expensive operation of factorizing a matrix with (n+p+ q)
rows/columns from scratch every time step, where n is the
dimension of AT A, and p, q are number of equality, active
inequality constraints respectively.

Note that ICS runtimes for dataset 1 (Fig. 8a) increases
more steadily compared to datasets 2, 3 (Figs. 8b,c). This
happens since equality constraints are always active for any
optimal point that is feasible, while inequality constraints
may or may not be active at optimal points that are feasible.

VI. DISCUSSIONS

We presented a framework ICS for incremental con-
strained smoothing. By combining a primal-dual method like
Augmented Lagrangian with an incremental Gauss Newton
reusing previously computed matrix factorizations, we were
able to satisfy hard constraints precisely within a threshold
without having to recompute solutions from scratch.

A current limitation is that of a fixed linearization point
for older states (similar to iISAM) making it unsuitable
for highly nonlinear problems. Future work would be to
explore the proposed approach within iSAM2 [4] that allows
for fluid relinearizations. Runtime performance of ICS can
also be further improved by exploiting sparsity in constraint
jacobians, locality in dual updates, and better step size
adaptation techniques.
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