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Abstract—In this paper, we present an active SLAM frame-
work for volumetric exploration of 3D underwater environ-
ments with multibeam sonar. Recent work in integrated SLAM
and planning performs localization while maintaining volumet-
ric free-space information. However, an absence of informative
loop closures can lead to imperfect maps, and therefore un-
safe behavior. To solve this, we propose a navigation policy
that reduces vehicle pose uncertainty by balancing between
volumetric exploration and revisitation. To identify locations to
revisit, we build a 3D visual dictionary from real-world sonar
data and compute a metric of submap saliency. Revisit actions
are chosen based on propagated pose uncertainty and sensor
information gain. Loop closures are integrated as constraints
in our pose-graph SLAM formulation and these deform the
global occupancy grid map. We evaluate our performance
in simulation and real-world experiments, and highlight the
advantages over an uncertainty-agnostic framework.

I. INTRODUCTION

The deployment of autonomous underwater vehicles
(AUVs) in unstructured 3D environments requires integration
of simultaneous localization and mapping (SLAM) with
path-planning. Robust autonomy enables inspection of areas
of interest—ship-hulls, bridges, reefs, dams, reactor pressure
vessels, nuclear pools, and ballast tanks—with minimal
human intervention. This is challenging due to the lack of
global positioning underwater and failure of visual sensing.

The goal of active SLAM is to generate navigation strate-
gies that complement mapping and localization. If SLAM
and path-planning are considered to be mutually agnostic,
their errors will affect each other. Uninformative trajecto-
ries can deteriorate map accuracy, and imperfect maps can
generate unsafe trajectories.

Many state-of-the-art planning algorithms for exploration
utilize a grid map representation and guide the robot towards
informative viewpoints [1-3]. These methods, however, as-
sume that the robot state estimate is accurate during operation
and cannot accommodate map drift. In contrast, SLAM meth-
ods that use 3D point clouds localize and correct a global
map, but do not preserve free-space information required
for planning. Some of these formulations use submaps—a
collection of smaller, locally consistent 3D point clouds [4—
9]. Recently, Ho et al. [9] presented an integrated SLAM
approach using a globally deformable grid map, amenable
to both localization and planning. Even so, this method is
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Fig. 1: Proposed active SLAM framework for underwater exploration with
sonar sensing. It maintains candidate revisit locations for loop closures
using a 3D saliency metric. Our method keeps track of maximum allowable
uncertainty, and chooses between next-best-view exploration and revisiting.
The vehicle state estimate and free-space is corrected by optimizing an
underlying pose-graph.

not considered as active SLAM, which jointly considers the
competing objectives of exploration and localization.

Active SLAM was demonstrated in marine environments
to construct bathymetric sonar maps while re-localizing drift-
ing vehicle pose [5, 10]. This approach uses particles rather
than a pose-graph, and is thus prone to particle depletion.
Subsequently, visual saliency was used to choose revisit
locations for AUV ship-hull inspection [11, 12]. However, it
uses a pre-computed trajectory focused on area coverage of
the locally planar portion of the ship hull, a 2D manifold of
the 3D exploration problem. In addition, while hull imagery
at close standoff distance is feature-rich, vision in general
marine environments is infeasible due to poor visibility and
a lack of features. These issues are resolved with the use of
multibeam acoustic sonar [13, 14], which is unaffected by
high turbidity.

In this paper, we present an active SLAM framework for
exploring 3D underwater environments with sonar submaps.
An overview of our method is shown in Fig. 1. We con-
sider a hovering autonomous underwater vehicle (HAUV) in
an environment with proprioceptive sensing and multibeam
sonar. Its navigation policy explores free-space with an in-
formation gain heuristic, and revisits loop closure candidates
based on 3D submap saliency. The results show lower pose
uncertainty, accurate dense maps, and reliable free-space
information. Specifically, our main contributions are:

(1) A global submap saliency (GloSSy) metric to identify
good loop closure candidates, coupled with a novel 3D
visual dictionary generated from real-world sonar data,



(2) A revisit policy for these candidates based on propagated
vehicle uncertainty and sensor information gain, and

(3) An evaluation of the active SLAM framework in simu-
lation and real-world settings.

II. RELATED WORK
A. SLAM and Planning

SLAM is typically handled as a maximum a posteriori
(MAP) estimate over a factor graph [15]. This is a bipartite
graph comprised of variables to be optimized and factors
that constrain the system. The variables represent the state we
wish to estimate and the factors are the sensor measurements.
In submap-based pose graph SLAM systems [6—8] scan-
matching is used to constrain the pose of the vehicle.

Bircher et al. [1] used a rapidly-exploring random tree
(RRT) planner [16] with the OctoMap representation [17]
for a next-best-view algorithm for volumetric coverage. Ho
et al. [9] combines the aforementioned SLAM and planning
modules for a submap pose-graph framework with globally
deformable free-space information.

B. Active SLAM

The area of active SLAM dates back to seminal work
on active perception by Bajcsy et al. [18]. Sim and Roy
[19] proposed that the performance of the SLAM solution is
dependent on the choice of the robot trajectory. Underwater
applications have focused on revisiting known loop closure
candidates to reduce uncertainty in surveying tasks. These
methods utilized visual saliency [11, 12] or bathymetric map
saliency [20] as a heuristic to prune candidates. However,
as detailed in Section I, these sensing modalities do not
generalize to many underwater environments. Saliency detec-
tion from unorganized 3D point clouds have been presented
[21, 22] and applied to LiDAR-based SLAM [23]. We adopt
a similar method for sonar submap data, which is a collection
of point clouds in local coordinate frames.

III. SUBMAP SALIENCY

A submap is an accumulation of sequential sonar scans
over a defined time period, based on vehicle egomotion.
It is assumed that within a submap, there is limited local
odometry drift. The first scan pose is designated as the
base pose, and all subsequent scans are registered to that
coordinate frame. We create a 3D scene dictionary offline,
and use it to measure the submap saliency of existing base
poses. This gives us unique 3D structures in a scene—and
empirically—good revisit candidates for scan-matching loop
closures. Kim et al. [24] uses this strategy to identify visual
candidates for loop closure camera registrations.
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The concept of perceptual saliency stems from research
on visual attention by Itti and Koch [25]. A bag-of-words
(BoW) representation [26] creates a scene dictionary, which
can be used for online loop closure detection [27]. While
commonly used for visual features, it has also been applied
on 3D descriptors for object recognition [28].

A. Vocabulary Generation

We use a 3D BoW representation of an underwater scene,
that we generate from real sonar data. We illustrate the
process of building this dictionary in Fig. 2. The input
submaps are obtained from three datasets collected from
teleoperating the HAUV in our underwater tank (Fig. 12).
Alternatively, we can use sonar data collected from a pre-
planned maneuver in the unknown environment.

For each submap, we obtain its Harris3D keypoints [29].
We extract 32-dimensional local 3D descriptors, known as
the signature of histograms of orientations (SHOT) [30]. This
jointly encodes the point normals and locations within the
local support, and is invariant to rotation and translation.
Finally, the SHOT descriptors are clustered into 3D visual
words that make up our scene dictionary of size 50.

B. The GloSSy Metric

Global saliency was used for images by Kim et al. [24]
as a measure of feature uniqueness across images. It was
applied to locate revisit locations in their ship-hull survey
trajectory. In place of their SURF descriptors, we use SHOT
descriptors to compute our global submap saliency (GloSSy)
metric. Similar to [24], we define an inter-submap rarity term
as a summation of inverse document frequency (idf):

Gs(t)= Y log, HJZ(Z)
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where W, C W is the subset of words found in submap
s, nwj(t) is the number of submaps that contain word wj,
and N(t) is the total number of submaps so far. This is
recomputed for all N(¢) submaps each time a new submap
is received. The idf update has linear complexity in N (¢), but
can also be implemented as an inverted index update scheme
[24]. It is normalized to a GloSSy score Sg_(t) € [0, 1]:

Gs(t
Se.(t) = g”,

C. Revisit Candidates

where  Gmax = max G;(t)  (2)
IEN(t)

Candidate poses with a high GloSSy score are expected
to be ideal candidates for loop closures. We empirically
verify this by visualizing the highest and lowest GloSSy
scores from the training data (Fig. 3). We observe the
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Fig. 2: Process of building a 3D submap scene dictionary offline from real-world sonar data.
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Fig. 3: The revisit poses with highest/lowest GloSSy scores from the
collected datalogs. The gray point cloud represents the global map, and
the colored sections show the submap that belongs to the revisit pose. They
are colored based on the magnitude of the scores. The 6-DoF pose of the
vehicle is visualized, along with the GloSSy score. We see a correlation
between GloSSy scores and good loop closure candidates.

highest scores are those poses oriented facing a submerged
object. These submaps are spatially unique, and can be easily
aligned in scan-matching. The low scores comprise of the
poses imaging the tank wall’s curvature, or the flat side of
the piling. These submaps are not spatially distinct in this
environment, and can lead to incorrect loop closures. We see
a correlation between the GloSSy metric and good poses to
revisit similar to the visual analogue [24]. We sort them by
their Sg, (¢) values and consider the top N = 3 candidates.

IV. ACTIVE SLAM FORMULATION
A. Factor Graph Representation

Our pose-graph is similar to that of [8, 9] (Fig. 4). The
variable nodes X = {x1,...xx} are the 6-DoF submap base
poses, each attributed to a local occupancy map. Upon loop
closure, the local maps are merged into a global map with
the occupancy probabilities updated according to [17, 31].

AUVs typically have a pressure sensor that directly ob-
serves depth (Z), along with an inertial measurement unit
(IMU) that observes absolute pitch and roll. The X, Y and
yaw directions are obtained through dead reckoning, with
drift accumulating over time. Thus, while the local pose
estimates are accurate, they drift in the plane over long dives.
This divides the vehicle odometry into two factors: (i) 3-DoF
relative odometry constraint (XYH), and (ii) 3-DoF absolute
unary constraint (ZPR) [8, 32]. Loop closure constraints are
obtained through iterative closest point (ICP) scan-matching
of submap point clouds. Finally, we add a pose prior at the
first node to bind the trajectory to a global coordinate frame.

Assuming Gaussian noise model, the MAP inference re-
duces to a nonlinear least-squares optimization problem [15]:
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Fig. 4: The pose graph formulation we use, based on Teixeira et al. [8].
The nodes x; represent vehicle pose, with odometry constraints and a pose
prior. Loop closure constraints between poses correct for vehicle drift and
corresponding local occupancy grid maps are adjusted [9].

The measurement prediction functions for the XYH, ZPR,
and loop closure factors are U(-), V(+), and L(-) respectively.
Their covariances are ¥;, ®;, and I';; respectively. LC is
the set of all pairs of poses (x;,xx) for which pairwise
loop closure constraints exist. The pose prior pg is in the
SE(3) Lie group, and © is the logarithm map of the
relative transformation between the elements [33]. [|wl|? A=
wTA~'w represents the Mahalanobis distance of w. We
solve the system in Equation 3 with iSAM [34], through
both efficient incremental updates and regular batch updates.

B. Allowable Navigation Uncertainty

We propose a dual-behavior navigation policy based on
maximum allowable pose uncertainty, similar to Kim et
al. [35]. For a detailed description, we refer the reader to
[36]. Revisits are executed when the current state estimate
has drifted, reflected in the robot’s marginal pose covariance
%, (t). This is expressed with respect to the initial vehicle
pose that is aligned with the world origin. To obtain this, we
use an efficient method to recover a part of the full covariance
matrix [37]. As shown in Section IV-A, a 3 x 3 covariance
matrix sufficiently captures the robot’s drifting state.

We use the D-opt criterion [38] as a mapping from
¥, (t) — R. Kiefer et al. [39] provides evidence that D-opt is
proportional to the uncertainty ellipse of the state parameters.
The D-opt criteria (D) has certain desired properties in the
context of active SLAM [40]. For our case:

D(S,(t)) = det (3.(£))"/* &)

Its ratio with a maximum allowable uncertainty >gjow iS:
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C. Policy Algorithm

Algorithm 1 describes the dual-behavior policy of the
vehicle. This is called after adding a new submap and
optimizing the pose-graph. The GloSSy scores (Section III)
are computed in parallel. When the uncertainty ratio exceeds
the threshold (U,-(t) > 1) we execute a revisit policy in an
attempt to re-localize, else we follow the NEXTBESTVIEW



Algorithm 1 : Active SLAM policy algorithm

Require:
map M(t), pose x(t), pose-graph G(t), RRT path R(t)
Ensure:
vehicle trajectory 7+ or Tnpy
if U (t) > 1 then
zf .. 2R < GETSALIENTREVISITPOSES(IV)
for k< 1to N do
Tr < GETREVISITTRAJECTORY(R(t), z(t), zf)
U < PROPAGATEVIRTUALODOM(G(t), Tx)
Gainy, < GETSENSORINFOGAIN(M(t), Ti)
Pr < GETREVISITUTILITY(U;, Gaing, «)
k* < GETMAX(P)
EXECUTE(7x~+)
else
Tabv <= NEXTBESTVIEW(M(t), z(t))
EXECUTE(Tnby)

Function: GETREVISITTRAJECTORY(R(t), z(t), )

n* + GETCLOSESTNODE(R(t), z&)
Tr < RETRACETREE(R(t), z(t), n*)
Tk < INTERPOLATE(Ty, =¥,)

exploration policy [1]. GETSALIENTREVISITPOSES returns
the best loop closure candidates as computed in Section III.

For each candidate we call GETREVISITTRAJECTORY
from the cached RRT path, a method similar to Stenning
et al. [41]. For each revisit candidate we compute the
closest node in the tree (GETCLOSESTNODE). We retrace
our path down the tree and locally interpolate between the
closest point and revisit candidate. Thus, the vehicle follows
a similar trajectory and sensor coverage, while avoiding
circuitous routes (Fig. 5). We generate an inbound path, and
the vehicle subsequently continues exploration.

D. Revisit Utility Function

Kim et al. formulates active SLAM as optimizing a
function based-on propagated uncertainty and redundant area
coverage [24]. This heuristic, or utility function, represents
the effect of an action on localization and planning. Our
utility function is similar, and considers (i) propagated pose
covariance at the revisit pose, and (ii) sensor information gain
from the path. When choosing a revisit policy, we evaluate
this function for each candidate. It is defined in Equation 6,
and evaluated by GETREVISITUTILITY. We select the revisit
candidate £* that maximizes the function:

P =— U, — (1-— - Gai
" ( o .k (1-a) alnk) ©)
uncertainty gain

This is depicted in Fig. 5, with uncertainty ellipses and sensor
ray directions. The relative weighting o can be adjusted,
leading to a spectrum of behaviors.

1) Uncertainty Term: Given a candidate revisit trajectory
Tk, we compute the terminating covariance matrix Y as
a measure of uncertainty. This is computed by forward
propagating current robot covariance X..(t) n steps via
virtual odometry factors in the pose graph (Fig. 6). Here

Sensor information gain
Pose uncertainty

¢--¢ Reused RRT path

® Revisit candidate

i
&

Fig. 5: We reuse the next-best-view RRT path to navigate to a revisit
location. To propagate uncertainty, we add virtual odometry along the tree
vertices, and compute the pose uncertainty at the candidate. To compute
sensor information gain, we interpolate our path and accrue the number of
unmapped voxels along the path.

Existing pose graph

’l Virtual XYH factor @ Virtual ZPR factor ¢ Virtual poses

Fig. 6: Addition of virtual nodes to the existing pose graph. Here x, is the
current robot pose, v; is a virtual pose node with the odometry factors. The
graph terminates at the candidate pose vy, .

v1 ... v, are the RRT path nodes in the revisit path 7. This
considers the worst-case (no loop closures) along the virtual
trajectory 7. We assume a constant velocity model and scale
the virtual odometry noise proportional to distance between
nodes. Finally, we run a batch optimization, and recover the
marginal pose covariance X [37]. The propagated uncer-
tainty can now be computed and is normalized by max(Uy):

D(Zk)
D(Sattow)

Intuitively, PROPAGATEVIRTUALODOM penalizes revisits to
far-off candidates as the drift incurred from that action can
make an imperfect state estimate worse.

2) Gain Term: GETSENSORINFOGAIN incentivizes tra-
jectories that increase free-space exploration along our revisit
path. This is computed by discretizing 7, and summing up
the sensor information gain according to Bircher et al. [1].

Uy = )

V. RESULTS AND EVALUATION

The framework is evaluated over multiple runs in a sim-
ulation and real-world environment. The objective is for the
HAUYV to explore and map the environment safely, with low
pose uncertainty. The metrics we assess are the quality of
the global map, pose uncertainty, number of loop closures,
and volumetric exploration. The experiments are run on an
Intel Core i7-7820HQ CPU @ 2.90GHz with 32GB RAM.
We compare our system against a set of baselines:

1. No revisits (Ho et al. [9]),
2. Reyvisits to a randomized candidate,
3. Dead-reckoning (Bircher et al. [1])



(a) Pose uncertainty for our method (b) Pose uncertainty with no revisits
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Fig. 7: Log-scale uncertainty ratio vs. submaps for an example run with 20 submaps. The cyan circles denote loop closures and yellow line is the allowable
uncertainty threshold. (a) Our method: Yellow markers indicate the triggering of a revisit policy. The mean uncertainty ratio lies close to this threshold
as a result of informative loop closures. (b) No revisit method: Here, the mean uncertainty ratio is moves away due to lack of informative loop closures.
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(b) Fig. 10: (a) Average number of loop closures over submaps. All three

methods show comparable performance < 10 submaps. Beyond that, our
Fig. 8: (a) Gazebo simulation with the HAUV. The environment is a metric method tries to guide the vehicle back to good loop closure locations,
model of the real-world tank environment (Fig. 12), with targets of different  and thus surpasses the baselines. (b) Average % of observed voxels in the
geometries. (b) We grow an RRT tree based on sensor information gain, unknown volume over submaps. Our method is able to perform more loop
and the Octomap maintains free, unknown, and occupied space. closures without compromising on the number of voxels observed. In the
no revisit case, a reason for the lower % could be due to geometry of our
sensor. With a line sensor, we miss observing voxels in an initial traverse,
which are then observed in a revisit trajectory.

10 15
# of submaps

has a profiling sonar with 96 beams and [29°, 1°] FoV.
Our simulation approximates the sensor as a 1D laser line
scanner, with range readings perturbed by Gaussian noise
consistent with that of our real-world sonar (o, = 0.01m).

(a) Active SLAM (b) Dead reckoning

Fig. 9: Ground truth point cloud and resultant map, with heatmap indicating ~ B. Simulation Environments
the cloud-to-cloud error. This global map is a collation of 20 submaps in . . .
the simulation environment. There is better alignment with our method for We first evaluate our method in our custom simulation

structures such as the central piling and the ladder. environment, a metric mock-up of an underwater tank. Fig.
8 (a) shows the Gazebo model of the tank and vehicle,
and Fig. 8 (b) shows the exploration of free-space. As each
Our simulator must have capabilities for mapping, plan-  run is stochastic, we average the results from five runs
ning, low-level vehicle control, and state estimation. We use  each. We accumulate 25 submaps (except one with 20), and
the UUV Simulator [42] based on Gazebo and modify the qualitatively ensure the environment is sufficiently explored.
vehicle to emulate the HAUV. In the real-world tests, we  We use the simulation parameters described in Table III.
use the HAUV from Bluefin Robotics [43] (Fig. 12). Its In Fig. 9, we compare the global map from a single run
payload consists of a Doppler velocity log (DVL), attitude  of our method against the dead-reckoning map. We can see
and heading reference system (AHRS) and depth sensor, with  structures are better aligned when incorporating the loop
measurement properties described in Section IV-A. closures. In addition, Fig. 7 (a) and 7 (b) plot the uncertainty
Here, we get direct readings of Z, roll and yaw (ZPR) ratio U, over submaps. We see that in our method the mean
from the depth sensor and AHRS. X, Y and yaw (XYH) is  uncertainty ratio is close to the allowable threshold, while
indirectly estimated through the accumulation of IMU/DVL it is higher without revisitation. This is because we are able
odometry. To mimic this behavior, we add Gaussian noise
to the relative odometry in XYH, as well as to the absolute
ZPR measurements. The noise and covariance parameters
are in Table III. Thus, our pose estimate drifts in the
plane’ similar to cheaper underwater sensing payloads. We Avg. statistics ~ Dead-reckoning No revisits Random revisits Our method

treat the uncorrupted odometry as ground truth. The vehicle  cloud error (m) 0.0831 0.0807 0.0798 0.0734
# loop closures - 12.6 16.6 174

A. Experimental Setup

TABLE I: Average cloud-to-cloud error over five runs. From left to right,
the final map error decreases and number of loop closures increase.
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Fig. 11: (a) Ground truth point cloud with our resultant map, where heatmap indicates the cloud-to-cloud error. (b) For the same run, we plot cross-section
of the final occupancy grid map (red: occupied, white: free-space). (¢) Good and bad loop closure candidates overlaid inside the global map.

Fig. 12: Real-world tank environment and the HAUV running our method.

to reduce vehicle drift through loop closures, while Ho et
al. [9] performs uncertainty-agnostic exploration.

Table I compares cloud-to-cloud error compared to the
three baselines. Our method has least error, with the largest
number of loop closures. Random revisits performs better
than no revisits, justifying the importance of returning to
poses. Next, we evaluate the how each method accumulates
loop closure constraints with time in Fig. 10 (a). Our method
achieves a higher number of loop closures, while exploring
a comparable volume of the environment (Fig. 10 (b)).

C. Real-world Experiments

We carry out real-time experiments with our HAUV
in an underwater tank environment. The cylinderical tank
has a depth of 3m, radius of 3.5m, and we submerge a
2mx0.6mx0.6m piling structure in it. Fig. 12 shows the
HAUYV autonomously navigating and mapping the environ-
ment. We run three trials each to compare our method with
that of no revisits. The runs explore the tank sufficiently, and
accumulate 15 to 25 submaps. These trials are autonomous,
separate from the teleoperated ones in Section III-A.

Fig. 11 shows a result from one of the runs, and qual-
itatively highlights all the parts of our system. Fig. 11 (a)
compares the final SLAM map with ground truth, where the
colormap indicates the magnitude of error. A cross-section of
the final 3D grid map (Fig. 11 (b)) illustrates the vehicle has
not compromised on volumetric exploration. Finally, Fig. 11
(c) overlays the best and worst GloSSy scores with the global

TABLE II: Average cloud-to-cloud error over three runs. OQur method gives
better quality maps, but has a lesser number of loop closures. This is
attributed to incorrect/degenerate matches from drift by the baseline method.
In general, the poor quality of loop-closures with real-world data leads to
only small improvement in map quality

Avg. statistics No revisits Our method
cloud error (m) 0.0686 0.0628
# loop closures 12.67 8.34

TABLE III: System parameters used for real-world experiments

Parameter Value Parameter Value
Octomap volume | 10m x 10m x 3.75m| |# Revisit Candidates 3
Initial free-space 3m x 3m x 4m U, threshold 101
Voxel resolution 0.15m « 0.6
RRT extension 1.5m Virtual velocity 0.5 m/s
Dictionary size 50 W, (x1073) 4.14,4.14,0.027
Submap size 100 scans d; (x1077?) 1,0.001,0.001

map—the piling represents an interesting revisit pose for
loop closures. In Table II we compare it to our baseline and
observe better quality maps. While the no revisits baseline
show a greater number of loop closures, the higher error
metric is attributed to incorrect/degenerate matches. We note
that across real and simulation tests, the lack of features leads
to many instances of poor quality, degenerate constraints.

VI. CONCLUSION

We develop an active SLAM framework for volumetric
exploration of 3D underwater environments with multibeam
sonar. This enables safe long-term autonomy and the result-
ing dense maps provide valuable information for inspection
tasks. We introduce the GloSSy metric for submap saliency,
and use it to identify ideal revisit poses for loop closures.
We choose from them based on propagated uncertainty and
information gain. Finally, the policy is executed by retracing
the cached RRT path. We evaluate our method in simulation
and real-world, comparing against a few baselines. While
demonstrated on the Bluefin HAUYV, it can be used on
hovering AUVs with similar sensing payloads.

Future work can draw inspiration from analogous LiDAR-
based methods for map representation and place recognition
[44]. Prior work on visual localization with this payload
can be incorporated to provide sensing redundancy [24, 45].
We can also explore opportunistic methods that perform
beneficial actions even below the uncertainty threshold [12].
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